1.
视觉检测在印刷行业的应用
利用在线/离线的视觉系统发现印刷过程中的质量问题,如切模,堆墨、飞墨、缺印/浅印、套印不准、颜色偏差等,同时在线设备可将颜色偏差和墨量多少的检测结果反馈给PLC,控制印刷设备的供墨量,对供墨量进行在线调节,提高印刷质量和效率。
2. 视觉检测在PCB板检测中的应用
利用视觉系统对PCB裸板进行检测,检测板上的导线和元件的位置和间距错误、线路和元件的尺寸错误、元件形状错误、线路的通段、板上污损等。
3. 视觉检测在零件检测中应用
机器视觉检测可以轻松应对金属零件生产的质量控制,如硬币、汽车零部件、连接器等。通过图像处理的方法,发现金属零件表面的划伤、残缺、变色、粘膜等缺陷,并指导机械传动系统将残缺品剔除,大大提高了生产效率。同时对缺陷类型的统计分析能够指导生产参数的调整,提高产品质量。
4、视觉检测在汽车安全中的应用
对于大多数人来说,还是在靠主观思想和意识判断开车过程中的突发事件,随着安全事故频频多发,安全理念已备受人们关注,数字化被用作汽车安全监测系统成为主流,也备受业内热议。
具不完全统计,50%的交通安全事故起源驾驶员意识不清醒从而酿成车祸。设想有没有一种能基于物联网的检测系统,即:检测驾驶员是否意识清醒,并提出警告,提前阻止安全事故发生呢?
答案是肯定的,目前业内已经有采用物联网数字化技术实现驾驶员精神状况的检测系统,它基于车联网应用的,以适应行驶安全检测的新需求。这种数字化的系统的应用融合姿态信息的多姿态人脸检测方法,基于生物特征的头部姿态估计方法,融合驾驶员自身多种生物特征的疲劳驾驶模型,将极大提高疲劳驾驶检测的准确性和可靠性。
这类数字化系统的工作原理就是通过视觉传感器对人的眼睑眼球的几何特征和动作特征、眼睛的凝视角度及其动态变化、头部位置和方向的变化等进行实时检测和测量,建立驾驶人眼部头部特征与疲劳状态的关系模型,研究疲劳状态的多参量综合描述方法;
同时研究多元信息的快速融合方法,提高疲劳检测的可靠性和准确性,从而研制稳定可靠的驾驶员疲劳监测系统。它检测的方法很多,比如:人脸快速检测方法、疲劳程度检测方法、疲劳驾驶问题检测等等。