随着自动化行业发展,机器视觉技术的应用已经十分广泛。例如在自动化制造行业中,用机器视觉测量、检测工件的各种尺寸参数,如长度测量、圆测量、角度测量、弧线测量、区域测量等,不但可以获取在线产品的尺寸参数,同时可对产品做出在线实时判定和分拣,应用十分普遍。
基于机器视觉技术的检测系统具有成本低、精度高、安装简易等优点。再加上功能强大的视觉软件,易于调整,灵活方便,且测量数据可存储,便于建立统计分析,便于快速发现问题,解决问题,是行业检测技术的不二之选。
但是在一些机器视觉检测项目中,很多客户遇到了
视觉检测精度的难题。例如:检测加工零件的外形尺寸、内外径,要求精度到10um。目前很多配置选择500万的相机,理论上是可以达到10um的精度的。可实际客户测试的精度远远达不到10um的要求,能做到30um就很不错了。其产生很大误差的主要原因有以下几点:
1、工业相机的选择:很多客户为了成本考虑选择CMOS相机,在拍摄物体的边缘时,其边缘轮廓的对比度较差,噪声也较大,给软件测量带来较大误差。通常建议使用CCD芯片相机。
2、相机镜头的选取:由于很多机械零部件有高低差,有较大的景深。而普通镜头因为视角因素,因此 很难拍摄到零部件的内壁等等,导致软件处理时很难找到最真实、准确的边缘轮廓,对图像处理算法 提出了更高的要求。
3、光源的选择:很多客户会选择普通的背光源。在
视觉检测精度不高时,背光源有价格的优势。在要求很高的前提下,背光源的原理是利用光线通过漫反射板产生均匀柔和的光,在某一点产生的光会向空间任意角度发散。那在检测圆形、柱形物体时,会在被测物体的边缘产生衍射现象。同时光源的亮度变化对图像中的亮暗也有较大的影响。